
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by:
On: 28 January 2011
Access details: Access Details: Free Access
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Physics and Chemistry of Liquids
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713646857

Dynamical structure factors for a fluid binary mixture in the
hydrodynamic limit
A. B. Bhatiaa; D. E. Thorntona; N. H. Marchb

a Physics Department, University of Alberta, Edmonton, Canada b Physics Department, Imperial
College, London, England

To cite this Article Bhatia, A. B. , Thornton, D. E. and March, N. H.(1974) 'Dynamical structure factors for a fluid binary
mixture in the hydrodynamic limit', Physics and Chemistry of Liquids, 4: 2, 97 — 111
To link to this Article: DOI: 10.1080/00319107408084276
URL: http://dx.doi.org/10.1080/00319107408084276

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713646857
http://dx.doi.org/10.1080/00319107408084276
http://www.informaworld.com/terms-and-conditions-of-access.pdf


Phys. Chem. Liq. ,  1974, pp. 97-111 
@ Gordon and Breach Science Publishers, Ltd. 
Printed in Dordrecht, Holland 

Dynamical Structure Factors 
for a Fluid Binary Mixture 
in the Hydrodynamic Limitt 
A. B. BHATIA and D. E. THORNTON 

Physics Department, University of Alberta, Edmonton, Canada 

and 

N. H. MARCH 

Physics Department, Imperial College, London, England 

(Received November 30, 1972) 

UFing the correlation functions obtained by Cohen ef al ,  the expressions for the number- 
concentration dynamical structure factors for a binary alloy are given in the hydrodynamic 
limit. Kubo relations are derived and presented via some new structure factors, which, 
although not directly connected to the scattering in the mixture, are linearly related to the 
number-concentration structure factors. The second moments for the various structure fac- 
tors are also given. Finally, sound attenuation in binary mixtures is briefly discussed. 

I .  INTRODUCTION 

In a recent paper on the electrical resistivities of alloys Bhatia and Thornton' 
introduced the number-concentration (N-C) dynamical structure factors. 
SNN(~,U) ,  S N C ( ~ , U )  and SCC(&W), to describe the structural aspects of scat- 
tering processes in binary alloys. The expressions for the long-wavelength (wave- 
vector, q+O) and high-temperature limit of the three N-C static structure factors 
were derived for fluid alloys, and recently the calculation has been extended to 
include the corresponding results for solid mixtures' . As a natural continuation 
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98 A. B. BHATIA, D. E. THORNTON A N D  N. H. MARCH 

of this program we present here the hydrodynamic limit (q + 0; angular fre- 
quency, w + 0) of the N-C dynamical structure factors for a fluid. 

The usual procedure in such a calculation is, following a proposal by Landau 
and Placzek3, to use the linearized hydrodynamic equations of irreversible ther- 
modynamics to describe the relaxation in time of relevant fluctuating thermo- 
dynamic variables in the fluid. This procedure has been utilized, mainly for one 
component systems, by a number of authors in a variety of physical situa- 
t i on~~- ’ .  Conveniently, Cohen et al.9 have recently considered the case of binary 
fluid mixtures and among their results are expressions for correlations between 
mass-density and mass-concentration” . In order to obtain expressions for the 
N-C dynamical structure factors from these correlations we find it convenient t o  
construct some new (M-X) dynamical structure factors in Section 11, which are 
essentially the Fourier transform of the mass-density and mass-concentration 
correlation functions. Although these structure factors are not directly connect- 
ed to scattering in the alloy, they are linearly related to  the N-C structure fac- 
tors. It is noted that the thermodynamic quantities entering the equations of 
Cohen et al. are implicitly evaluated at constant mass and we find, as might be 
expected, that the results for S”(q,w) etc., are much simpler if these quantities 
are evaluated at constant number. The relevant change of variables and trans- 
formation details are given in the Appendix. Hence, in Section 111 we give the 
resulting expressions for the N-C dynamical structure factors in the hydro- 
dynamic limit. 

The next section contains some exact results (Kubo-relations) for the trans- 
port coefficients in a binary alloy. The M-X structure factors are more intimately 
related to transport in the mixture than are the N-C structure factors, so the 
expressions for the transport coefficients are given in terms of the appropriate 
limiting values of these former functions. Also included in this section are the 
second moments of the various structure factors. 

Finally, in Section V a brief discussion is given on sound attenuation in fluid 
binary mixtures, and in particular, of the attenuation caused by mutual diffu- 
sion. The sound attenuation is related to the width of the Brillouin peaks and 
the general expression obtained (always assuming the sound wave-length is large 
compared to the mean free path of the molecules) is specialized to rederive the 
known results for an ideal gas mixture. 

Before proceeding further, we should mention that our discussion (as also 
that of Ref. 9) is, strictly speaking, limited to mixtures of ‘simple’ liquids, 
i.e. (a) liquids in which effects of relaxation of energy between the internal 
(vibrational or rotational) degrees of freedom and translational degrees of free- 
dom can be neglected, and (b) which are not highly associated liquids, llke 
glycerine, where structural relaxation occurs on a time scale comparable to the 
frequency of thermal sound waves responsible for scattering. A non-simple or 
‘relaxing’ liquid has to be described by additional thermodynamic ‘order’ para- 
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DYNAMICAL STRUCTURE FACTORS 99 

meters and the expression6 ,7 ,11 for the dynamical structure factor even for such 
a one component liquid is much more involved than the corresponding expres- 
sion (Eq. 36, below) for a simple liquid. It is hoped to consider mixtures of 
relaxing liquids in a subsequent publication. 

II. M-X DYNAMICAL STRUCTURE FACTORS 

In order to make contact between the hydrodynamic correlation functions 
presented by Cohen et al. and the N-C dynamical structure factors it is both con- 
venient and illustrative to introduce some new dynamical structure factors. These 
functions, though not as closely connected to the scattering in a binary mixture 
as the N-C structure factors, are intimately related to the transport coefficients. 

Consider then a binary alloy within a volume V having Na (a = 1,2) atoms of 
the type a which contribute a mass Ma to the total mass, M (= M l  + M2), of all 
N (= N1 + N,) atoms in the mixture. Let pa = Ma/V be the mean mass-density 
of the a-species, and define the mean mass-concentration, x,  by 

x = M I  /M = P 1 /P (1) 

where p = M/V is the mean mass-density. Also, for later purposes, we have for 
the mean number-concentration c = N1./N. 

If pa  (?,t) denotes the local mass-densi.ty at time t for species a, then the local 
fluctuation in this quantity is given by 

( 2 )  Gpd?,t) = pa(;,t) - pa = m&n&,t) 

Here, Gn&,t) is the fluctuation in the local number-density operator of species 
a which is introduced in Ref. 1, and used there to construct the N-C dynamical 
structure factors. Further, ma is the molar mass, per atom, of species a 

m a  = Ma,/& [= (aM/aNa)Np]. (3) 

We now form the local fluctuations in the total mass density and mass- 
concentration, namely 
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I00 A. B. BHATIA, D. E. THORNTON AND N. H. MARCH 

Making the Fourier expansions 

and 

we have 

and 

In terms of the Fourier coefficients (8) and (9) we define the M-X dynamical 
structure factors as 

1 
47r 

S M X ( ~ , W )  = --Jedwt d t W t ( 4 , 0 )  X (4,t) + Xt(4,0) M (4,t)>, (1 1) 

S X X ( 4 , U )  = - $edUt dt<Xt(q,O) X (G,t)>: (12) 
277 

where <....> denotes an ensemble average. Clearly, via equation (2), these func- 
tions may be related to  the Fourier transforms of the 6% (?,t), and hence to the 
N-C structure factors of Ref. 1. We find, 

S M M  = m [ S N N  + 2 6 m s N C  + 6 i s C C ] ,  

SM x = [SNC + ~ ~ S C C I ,  ( 1  3 )  

sxx = 2 [SCCIP 
Y 

Y 
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DYNAMICAL STRUCTURE FACTORS 

In (13) and (14) 

m = cml + (1-c)m2 [= (aM/aN),] 

is the mean molar mass, per atom, 

is the fractional change in mass with number-concentration, and, finally, 
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(1 5) 

The mass-density, mass-concentration hydrodynamic correlations of Cohen et 
al. are essentially, apart from trivial factors, the time-dependent correlations on 
the r.h.s. of Eqs. (10)-(12). Utilising Eqs. (13) and (14), therefore, it is a straight- 
forward matter to obtain expressions for S N C ( ~ . ~ )  etc., in the hydrodynamic 
limit. 

1 1 1 .  N-C DYNAMICAL STRUCTURE FACTORS IN THE HYDRODYNAMIC 
LIMIT 

The thermodynamic quantities entering the equations of Cohen er al. are all 
implicitly evaluated at constant mass and, in order to simplify the expressions 
we obtain for S"(q,o) etc., we have transformed these to variables which are 
evaluated at constant total number. Relevant transformation details are given in 
the Appendix. We obtain, 

w2+Yzq4 

where kB is Boltzmann's constant, KT (= - - ) is the isothermal ap T,c,N 
compressibility, y (= C, /C , )  is the ratio of the heat capacities at constant pres- 
sure and volume and c, (= [aP/ap]F,, = [ y / p ~ ~ ] ' )  is the adiabatic speed of 
sound. 
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102 A. B. BHATIA. D. L. THORNTON AND N. 14. MARCH 

Further, in Equation (1 8) we have 

and 

x2, yDVZ 2r = b + x(7- 1) + - 
KT 

A3 =(3r-b) + 2VrD6m - c. 
KT 

Vh . Here, X(= -) is the thermal diffusivity, where h is the coefficient of thermal 

conductivity, kT is the thermal diffusion ratio , D is the coefficient of mutual 

diffusion, (UT (= - [””I - ) is the coefficient of thermal expansion and 

b = ({ + f q ) / p ,  where 5 and 7 are the bulk and shear viscosities, respectively. 
Also, if vff = [ a V / a N a ] p , ~ , ~ p  (w) denotes the partial molar volume, per atom, 
of species ti, we have for the mean molar volume, per atom, v, 

CP 

aT P,qN 

v =  [g] =cv1 +(l-c)vz, 
P,T,c 

and for the N-C dilatation’, 

v1 - v2 

V 

Further, 

1 k ~ a ~  z = -  (6 - 6,) + -, 
Z CP 
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k+Z g= D[ 1 + -1, 
TCP 

['d P,T,NP) de- 
G denotes Gibb's energy and pc = N(pl -pz ) ,  where 
notes the chemical potential per atom of type a. 

(= 

We also obtain, 

where 

and 

Finally, 

where 

and 

A4 = (Y-X)-' [(D-Y) 6 z + D ~ T ~ T ] ,  - 
CP 

As = (X-Y)-' [(D-X) + DkTQT], 
CP 

(33) 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
9
:
0
2
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



104 A. R. BHATIA, D. E T H O R N T O N  AND N. H. MARCH 

The expression for the dynamical structure factor for a one-component liquid 
may be obtained from the above equations by taking the limit c = 0, whence 
SNC = Scc = 0 and SN N S(q,o), with 

where now r = %[b + x(-y-I)] and A 3  = 3r .-b. 
The above expressions of s"(q,W) etc., are exact (in the hydrodynamic 

limit) to the first order in rq/C, l 3  or aq/Co, where a stands for the transport 
coefficients b, x or MDCZIZ. Care, however. has to be taken to include the non- 
Lorentzian contributions in S"(q,cd) or S(q,w) (terms in A 3 )  and sNC(q,w) 
(term in A6) .  The importance of including such terms has been pointed out 
previously'4 and we find that they make vital contributions in the derivation of 
the Kubo-relations given in the next section. 

The central or Rayleigh component in S"(q,Cd) is seen to  consist generally 
of the sum of two Lorentzians (terms in A l  and A'), the width of one Lorentz- 
ian being largely controlled by thermal conduction and the other by mutual 
diffusion. This is most easily seen by putting kT = 0 in (20)-(23) (its contribu- 
tion is typically expected to be small in comparison with that of x or D), 
whereupon the width of one peak becomes xq' and the other Dq'. The inte- 
grated intensity under the former peak is now (N/V)kgT(y-I)K,, as in the Ray- 
leigh component for a pure material, and under the latter, NkBTti2/'Z. Hence, in 
this case (kT = 0), the contribution to the Rayleigh component by mutual diffu- 
sion is scaled by the relative partial molar volumes of the species in the mixture. 

The two Doppler-shifted peaks (Brillouin components) centered at frequen- 
cies w = ?C,q arise, as in the one-component case, from sound propagation in 
opposite directions (for a given 4) and their width, r q 2 ,  is controlled by acoustic 
attenuation. 

It is interesting to note that the ratio of the integrated intensity (I,) of the 
Rayleigh components in S"(q,cd) to that of the doublet Brillouin side peaks 
(211) is quite generally given by (kT not necessarily zero), 

not just (7-1) as in the case of one component non-relaxing liquids. 
The 'non-Lorentzian' terms in S"(q,cd) (and in sNC(q,O)) make n o  con- 

tribution to the integrated intensity and, usually, only a small contribution to  
the intensity distribution. However, if rq/Co is not much less than unity, they 
can markedly affect the position and shape of the Brillouin peaks in s"(q,O). 
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DYNAMICAL STRUCTURE FACTORS 105 

The two Lorentzians in sNC(q,cd) primarily arise, respectively, from diffusive 
processes and the coupling between this type of mode and the thermal con- 
ductive mode. If the coupling is zero (kT = 0) the latter component is no longer 
present and the width of the remaining Lorentzian is simply Dq’. The two 
components in Scc(q,w) behave in a similar manner. 

The static structure factors S”(q), sNC(q) and Scc(q) may be obtained 
simply by integrating s”(q,W), sNC(q,O) and Scc(q,w), respectively, over all 
values of w. One finds using (1 8), (30) and (34) 

These expressions agree with the results (in the same limit, q + 0) presented in 
Ref. 1 ,  and are applicable equally to simple and relaxing liquids. 

IV. KUBO RELATIONS AND SECOND MOMENTS 

In t h s  section we present some exact results for binary mixtures. 
The hydrodynamic expressions for the dynamical structure factors given in 

the previous section may be expanded in series and appropriate limits taken to 
generate Kubo-relations for the transport coefficients in a binary mixture. We 
find, 

where Z, =(a’G/ax’)p,T,M. Thcse results are presented in terms of the M-X 
structure factors as the transport coefficients, at least in Eqs. (41) and (42), 
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106 A. B. RHATIA, D. E. THORNTON AND N. H. MARCH 

are clearly (using Eq. (13) more closely related to these functions than the 
N-Cstructure factors. This is t o  be expected as the relevant transport coeffi- 
cients are essentially connected to correlations between momenta and forces, 
which are merely time-derivatives of mass-densities. 

It is noted that Equation (41) has the form of the well known result for the 
one component case, with (A) SMM(q,U) playing the role of S(q,o), the V a n  
Hove dynamicd structure factor. Also, using (1 3) and (A3), (43) may be written 

(44) 
1 NkBT D Lim w2 Lim - Scc(q,w)=- - Z n  

, 
w+o q d  

which should be compared with the corresponding result for a one component 
system, 

1 D' Lim o2 Lim - S , ( q , w ) =  -- u-4 q 4 q 2  n (45) 

Here S,(q,w) is the self part of S(q,w) and D' is the coefficient of self-diffusion. 
The second moments of the various structure factors may be quite generally 

calculated for classical liquids following the procedure of De G e ~ e s ' ~ .  Writing, 
(E,E' = N,C;M,X) 

we find, 

T?(2) = c ,  c2  y k,T cc m 

and, consequently, 
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DYNAMICAL STRUCTURE FACTORS 107 

= o  
MX 

Once more the expressions involving the M-X structure factors are simpler. 
Again, the reason is that the second moments involve consideration of momen- 
tum correlations, which are related to the time derivatives of correlations be- 
tween mass-densities. 

The fourth moments may also be obtained in a similar manner, but are rather 
lengthy and will not be presented here. 

V. SOUND ATTENUATION IN MIXTURES 

The width, rq2, of the Brillouin components in S"(q,o) is related to the 
acoustic attenuation in the medium. Explicitly, the amplitude attenuation per 
wavelength, a ,  is given by (using (19)) 

where 

[ d a ] D  = (nMD/Z) [(6-6,) + z k ~ C Y ~ / c p ] '  (54) 

The first two terms on the right hand side of (53) are the well known results for 
attenuation caused by viscosity and thermal conductivity, respectively . The 
last term in (53) ,  i.e. Eq. (54), gives the contribution due to diffusion", and it 
is this term we shall consider in more detail. 

Clearly, by taking the appropriate approximate expressions for G in a binary 
mixture we may evaluate [ a / w ] ~  for regular, ideal, athermal, etc., solutions. 
However, rather than adopting this procedure here we choose, for illustration, to 
make contact with previous work by considering the case of an ideal gas mix- 
ture. Here, we have PV = NkBT, so that 6 = 0, CUT = 1/T, K T  = 1/P, and, further, 
for an ideal solution, 
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108 A. R .  BHATIA. D. E. THORNTON AND N. H. MARCH 

Hence, we obtain 

ElD =nDc(l-c) 
Y 

where /?=kT/C( 1- c), the thermal diffusion factorig, has been introduced. This 
formula has been derived previously20-22 from kinetic theory calculations, and 
has been verified experimentally for noble gas mixtures of various composi- 
t i o n ~ ~ ~  . 

VI. CONCLUSION AND SUMMARY 

In this paper the expression for the three number-concentration dynamical 
structure factors S N N ( ~ , W ) ,  SN,-(~,W) and SC,-(~,W) in the fluid hydrodynamic 
limit (q + 0, w -+ 0) have been presented. 

Three new dynamical structure factors S M M ( ~ , U ) ,  S ~ x ( q , w )  and Sxx(&w), 
which are closely related to mass-density, mass-concentration correlations in a 
binary mixture, are introduced. These functions, though not directly connected 
to the scattering like s”(q,w) etc., are, in the appropriate limits, intimately 
related, as shown, to the transport coefficients in the mixture. 

A general expression for the sound attenuation in a fluid mixture is given, 
and is applied to the case of an ideal gas mixture in order to rederive a result 
previously obtained by kinetic theory calculations. 

For completeness the second moments of the various dynamical structure 
factors for classical fluids are presented. These results, along with the expressions 
for the transport coefficients in the same Section, will be used in a subsequent 
paper to discuss viscosity and mutual diffusion in binary isotopic mixtures. 24 . 

Appendix 

The transformation between the thermodynamic variables (M,x) used in Ref. 9 
to (N,c) used in Ref. 1 is made via 

and 

AN AM 
N M  

- - y6,Ax - - -  
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DYNAMICAL STRUCTURE FACTORS 109 

We then find after some algebra 

6, = y(6-6,) , 

and 

where px= M ( f i  - ’12). The second equality in (A3) follows from the differen- 
m1 m2 

tial expression for the Gibb’s energy: 

AG = -SAT -I VAP t pXAx t ~ M A M ,  
1.11 P2 
ml m2 where we have written C(M = x -+ (1 -x) -. 

The important quantities wluch transform trivially are 

K T , X , M  = K T , C , N  K T  (similarly K ~ )  

Cp,x,M = C p , ~ , N  cp 

QT,x,M = “T,c,N =QT 

(similarly C,) (A71 

To illustrate the symmetry between the two sets of variables, the longwave- 
length limit of the M-X static structure factors may be calculated, either by 
integrating the hydrodynamic SM M(q,U), etc., over all 0, or using thermo- 
dynamic fluctuation theory. Either way one finds, 
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110 A. B .  BHATlA. D. E. THORNTON AND N. H .  MARCH 

These should be compared with (38)-(40), and may be checked using (1 3) and 
(A3t(A5).  
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S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases, 2nd 
ed. (Cambridge U.P., 1952). p. 399. 
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